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Teorias causales e inferencia causal

Charles Tilly: La guerra fue la causa del Estado en Europa
Theda Skocpol: Crises del Estado más revuelta campesina causaron las evoluciones sociales
Barrington Moore Jr.: Las bueguesias fuertes conducieron revoluciones hacia la democracia
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Qué es inferencia? Qué es process tracing?

Inferencia: juzgar la pertinencia de una teoria en función de la evidencia (Lipton, 2004)

Process tracing: es un método de investigación que consiste en examinar
sistemáticamente evidencia detallada (como historias, documentos de archivo,
transcripciones de entrevistas y otras fuentes) para determinar si el proceso causal
hipotetizado por una teoría se hace evidente en la secuencia y los valores de las variables
intervinientes dentro de un caso (George & Bennett, 2005).
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Dos productos de los 80

El problema fundamental de la inferencia causal (Holland, 1986)
Back to the Future (Zemeckis, 1985)
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Problema Fundamental de la Inferencia Causal (Holland, 1986)

El efecto causal de un tratamiento t sobre el valor de “y” en una unidad i :

βi = yi(t=1) − yi(t=0)

donde:

yi(t=1): resultado del caso i con tratamiento
yi(t=0): resultado del caso i sin tratamiento,

Por lo tanto, no es posible observar el efecto de t en i .
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Back to the Future (1985)
Lorraine y Marty en Back to the Future (Robert Zemeckis, 1985).
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Dos “1985” en Back to the Future

George atropellado
(1955)

Lorraine besa George Marty existe Flia McFly derrotada
(1985)

Viaje temporal de Marty
a 1955

Marty es
atropellado Lorraine <3 Marty

George y Marty
conspiran Marty transparente

Lorraine besa
George Marty existe

Flia McFly campeona
(1985)
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Sin el DeLorean, PFIC nos dice que siempre podemos cometer un error
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Por qué los experimentos funcionan (en promedio)
Inferencia en base a un tratamiento aleatório.
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Es más fácil estimar los efectos de una causa . . .

que estimar las causas de un efecto
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Metodo comparativo
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Process tracing pude ser “Theory-guided” (Falleti, 2016)

Entonces necesito una teoría
Y para testear esa teoría necesito al menos otra teoría
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Test de hipótesis

H1 H2 H3 H4

Observación 1 predice no predice no predice no predice
Observación 2 predice no predice predice no predice
Observación 3 predice no predice no predice predice
Observación 4 predice no predice no predice no predice

Matias López — Universidad Diego Portales Inferencia Estadística en Process Tracing 2026-01-04 14 / 51



Enfoque en el mecanismo

X M Y

Mecanismo: X −> M −> Y

C X M

Y

'C' es la verdadera causa de Y
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“Two cultures”
Goertz & Mahoney (2012): Cuanti y cuali usan distintas ramas de la matemática
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“No es lo que parece!”
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“No es lo que parece!”

Matias López — Universidad Diego Portales Inferencia Estadística en Process Tracing 2026-01-04 18 / 51



Tests de Van-Evera
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Rossel et al. (2017)

En 2005 el FA implantó CTs en Uruguay haciendo vista gruesa de condicionantes. En 2013 el
mismo FA decide hacer enforcement. Por qué?

H1: FA presionado por case média meritocrática orbitando hacia oposición
HR1: Decisión tecnocrática
HR2: Gobierno de derecha
HR3: State capacity

Evidencia:

La oposición y la opinión pública presionaron por mayor dureza.
El FA perdió apoyo entre sectores medios y altos.
Medios pro-sanciones no alineados con el FA ganaron visibilidad.
Autoridades (incluido Mujica) reconocieron presión de la clase media.
El FA defendía la laxitud antes del giro y promovió la sanción después.
Informes técnicos indicaban que las condicionalidades no eran necesarias.
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Podemos aprender sobre las probabilidad de una teoria
Cuál es la mejor teoria sobre la chica de la moto?
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Inferencia estadística

Process tracing explícitamente Bayesiano (Fairfield & Charman, 2022)
Actualizar la creencia en H1
Cuál teoría hacer la k más esperada, H1 o ¬H1?

Pr(H1 | k)
Pr(¬H1 | k)︸ ︷︷ ︸
posterior odds

= Pr(H1)
Pr(¬H1)︸ ︷︷ ︸
prior odds

× p(k | H1)
p(k | ¬H1)︸ ︷︷ ︸
Bayes factor

—
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En R

# Priors H1: frio ¬H1: cuernos
prior_H1 <- 0.5
prior_notH1 <- 0.5
# Likelihood de k (temperatura corporal) para H1 y ¬H1
lik_k_given_H1 <- 0.90
lik_k_given_notH1 <- 0.05
BF<- lik_k_given_H1 / lik_k_given_notH1
posterior_H1 <- (lik_k_given_H1 * prior_H1) /

(lik_k_given_H1 * prior_H1 + lik_k_given_notH1 * prior_notH1)
posterior_notH1 <- (lik_k_given_notH1 * prior_notH1) /

(lik_k_given_H1 * prior_H1 + lik_k_given_notH1 * prior_notH1)
# Output
BF

[1] 18
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Veámoslo con un plot de la probabilidad posterior
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The Bayesian turn

Lógica Bayesiana y de process tracing son “paralelas” (Bennett, 2008)
Está “en el corazon” de process tracing (Mahoney, 2016)
Es el “único enfoque sólido para el análisis causal con datos cualitativos” (Fairfield &
Charman, 2022, p.5)
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Qué es “Bayesiano” en process tracing “Bayesiano”?

Pr(H1 | k)
Pr(¬H1 | k)︸ ︷︷ ︸
posterior odds

= Pr(H1)
Pr(¬H1)︸ ︷︷ ︸
prior odds

× p(k | H1)
p(k | ¬H1)︸ ︷︷ ︸
Bayes factor

—
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Qué es “Bayesiano” en process tracing “Bayesiano”?
Con flat prior

Pr(H1)
Pr(¬H1) = 0.5

0.5 = 1,

la regla Bayes indica

Pr(H1 | k)
Pr(¬H1 | k)︸ ︷︷ ︸
posterior odds

= Pr(H1)
Pr(¬H1)︸ ︷︷ ︸
prior odds

× Pr(k | H1)
Pr(k | ¬H1)︸ ︷︷ ︸

Bayes factor

,

o sea:

Pr(H1 | k)
Pr(¬H1 | k) = Pr(k | H1)

Pr(k | ¬H1)
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Qué hace el factor de Bayes

Un factor de Bayes
Pr(k | H1)

Pr(k | ¬H1)
compara dos modelos especificados de observación que representan dos afirmaciones
antagónicas.

Ej: FB=10 indica H1 10 veces más probable que ¬H1

Pero no hay en la literatura un método para especificar modelos para H1 y ¬H1

Zacks (2021) piensa que esto genera sesgo via “inflated posteriors”
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Esto puede ser un problema

Una simulación:

La investigadora tiene una hipótesis H1 sobre la causa de y en caso a. (x fue causa de y)
Existen múltiples teorías rivales representadas por (¬H1) (z fue causa, w fue causa, etc.)
La investigadora tiene evidencia cualitativa k: 5 entrevistas, 3 artículos de prensa, 2
documentos (N = 10)
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Toda la evidencia sugiere H1 es correcta

Evaluamos cuán esperable es k bajo:
H1
HR1, HR2, HR3

Si toda la evidencia es esperada para H1 y no para ¬H1, entonces

p(k | H1)
p(k | ¬H1) > 1

La investigadora juzga que p(k | H1) = 0.99 y que p(k | ¬H1) = 1 en un millón.

Con “flat priors obtendrá Pr(H1 | k) = 0.9999 o 99.99 confianza en H1
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Lo que necesitamos son modelos de observación

Cómo justificar un modelo para Pr(k|H1)?
Cómo justificar un modelo para Pr(k|¬H1)?
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Lady Tasting Tea
Dr. Bristol afirma poder distinguir si la leche fue añadida antes o después del té.

H1: La mujer puede distinguir correctamente.
¬H1: La mujer no puede distinguir (responde al azar).
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El experimento

Se le presentan 8 tazas: 4 con leche primero, 4 con té primero

Si X es el número de aciertos al elegir n = 4 tazas de entre N = 8, entonces podemos saber la
frecuencia de cuakquier resultado bajo ¬H1:

P(X = x) =
(4

x
)( 4

4−x
)(8

4
) , x = 0, 1, 2, 3, 4
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El resultado

(
8
4

)
= 70, P(X = x) =

(4
x
)( 4

4−x
)

70 , x = 0, . . . , 4

P(X = x) =
{ 1

70 ,
16
70 ,

36
70 ,

16
70 ,

1
70

}
(x = 0, 1, 2, 3, 4)

⇒ P(X = 4) = 1
70 =0.014
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En R
n_cups <- 8
truth <- c(rep("Leche", 4), rep("Te", 4))
adivinaciones <- c(rep("Leche", 4), rep("Te", 4))
count_correct <- function(x, y) {

sum(x == y)}
observed <- count_correct(truth, adivinaciones)
all_combinations <- combn(n_cups, 4)
correct_counts <- apply(all_combinations, 2, function(idx) {

guess <- rep("Te", n_cups)
guess[idx] <- "Leche"
count_correct(truth, guess)})

p_value <- mean(correct_counts >= observed)
p_value

[1] 0.01428571
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Prompt para chat GPT

Yo tengo 8 bolas, 4 son azules, 4 son rojos.
Dame la probabilidad de sacar solo azules si selecciono 4 bolas
Usa la distribución hipergeométrica.
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Podemos especificar un modelo de observación para ¬H1 afuera de un
experimento

Modelo +1

conjunto T : n observaciones hechas en favor de H1
conjunto R: n + 1 obsernaciones necesarias en favor de ¬H1

U = 2T + 1

Si X es el número de observaciones a favor de H1 en una muestra de tamaño n, entonces:

P(X = x) =
(n

x
)(U−n

n−x
)(U

n
)

Matias López — Universidad Diego Portales Inferencia Estadística en Process Tracing 2026-01-04 38 / 51



Ejemplo con 10 observaciones
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Es el modelo más conservador para ¬H1
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Es fácil testear la sesibilidad de nuestro p − value

#
Pode-
mos
darle
peso
a
“smok-
ing
guns”
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Múltiples explicaciones rivales

¬H1 en un experimento es exacta y única
¬H1 en process tracing son muchas

¬H1 =
k⋃

i=1
H(i)

0 = {H(1)
0 , H(2)

0 , . . . , H(k)
0 }
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El modelo “+1” es un bue modelo para ¬H1

Pr(k | H1)
Pr(k | ¬H1) = Pr(k | H1)

maxi=1,...,m Pr
(
k | H(i)

0
)
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Caso: CTs en Uruguay (Rossel et al., 2017)
Proceso policy shift en política de condicionalidades (CCT)

H1: FA presionado por case média meritocrática orbitando hacia oposición
HR1: Decisión tecnocrática
HR2: State capacity
HR3: Gobierno de derecha
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Test summary
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Ventajas de este modelo de inferencia estadística

Más conservador (privilegia Error Tipo II)
Menos supuestos (El mundo de ¬H1 produce evidencia en favor de ¬H1; sesgo<ω)
Especificación completa
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More R code
library(here)
library(kableExtra)
library(BiasedUrn)
library(dplyr)

find_odds <- function(omega, m1, m2, n, x, alpha_thresh = .05, alpha_adjust = 1) {
# m1= number of pieces of evidence supporting the working theory
# m2 = number of pieces of evidence supporting the rival theory
# n = number of pieces drawn from the urn
# odds = odds of drawing evidence supporting the working theory versus rival theory
# x = number of pieces of evidence supporting the working theory in the sample of size n
p_found <- dFNCHypergeo(x = x, m1 = m1, m2 = m2, n = n, odds = omega)
critical_value <- alpha_thresh / alpha_adjust
return(p_found - critical_value)

}

found_odds_ex1 <- uniroot(f = find_odds, m1 = 2, m2 = 3, n = 3, x = 2,
interval = c(.0001, 10), trace = 2, extendInt = "upX")$root

the_found_dens_ex1 <- dFNCHypergeo(c(0, 1, 2), m1 = 2, m2 = 3, n = 3, odds = found_odds_ex1)
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Pesos y sesgo
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